Westrf felds uwnor schoo

Progression and expectation

 in calculations; a guide for parents.

Addition and subtraction.

ADDITION AND SUBTRACTION

A pre year 3 child would say:

Number bonds and counting.

I can recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100.

I can count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward.

Mental Calculation.

I can add and subtract numbers using concrete objects, pictorial representations, and mentally strategies including:
TU + 1; TU + 10; TU - 1; TU -10
TU + U; TU -U
TU + TU (begin with largest number first e.g. change $23+36$ to $36+23$ and then calculate) $U+U+U$ (use number bonds to add first e.g. $3+$ $5+7=10+5=15$).

Problem solving.

I can solve problems with addition and subtraction: I can use concrete objects and pictorial representations, including those involving numbers, quantities and measures.
I can apply my increasing knowledge of mental and written methods
I can solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.

Reading and writing numbers, understanding place value and comparing numbers.

I can read and write numbers to at least 100 in numerals and in words.
I can recognise the place value of each digit in a two-digit number (tens, ones/units) I can compare and order numbers from 0 up to 100 ; use <, > and = signs.

Mental Calculation continued.

I can use known facts to, and derive related facts, up to 100 including:
Number pairs to 100 (If $3+7=10$ then $30+$ $70=100$).
If $7+5=12$ then $37+5=42$.
If $15+10=25$ then $15+9=24$.
If $35-10=25$ then $35-9=26$.

Written Calculations, identifying, representing and estimating numbers, and checking answers.
I can read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.
I can identify, represent and estimate numbers using different representations, including the number line. I can recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Many practical manipulatives are used to make the link between the abstract and the concrete. This allows children to grasp the fundamentals of number.

Imagine one more spot		$\begin{aligned} & 24 p+10 p=34 p \\ & 34 p-10 p=24 p \end{aligned}$
Numicon for adding 10 more and 1 more 14 $+10=24$ 19 $+1=20$	Hundred square for adding tens and units	Numicon，arrow value cards and Dienes （Base 10）for understanding place value and exchanging 10 units for a ten
Dienes and Numicon used vertically Units \qquad \square $24+37$	preparation for column addition Units $\downarrow \Delta \Delta \Delta \searrow$ ロいいいい	Recorded as： $\begin{array}{ll} 20 & 4 \\ 30 & 7 \\ --------- \\ 50+11=61 \end{array}$
Imagine one less spot	54 p in the purse．Take 10 p out，another 10p and so on	
©（1）©（1） Which line hak most money？ How much more？		The difference is？
00000000000000 The difference between 11 and 14 is 3. $14-14$ $14-11=3$ $11+\square=14$	$72-24=48$ Using the number line－counting back （taking away）	$84-56=\square$ $56+\square=84$ Using the number line counting on （finding the difference）

ADDITION AND SUBTRACTION

A year 3 child would say:

Number bonds and counting.

I can recall and use addition and subtraction facts to 20 fluently. I know number pairs that total 100.
I know number pairs that total 1,000 in multiples of 100 .
I can count in steps of 4, 8, 50 and 100 forward and backward.
Find 10 and 100 more and less that a given number.

Mental Calculation.

I can add and subtract numbers mentally, including:
HTU + 1, HTU + 10, HTU + 100
HTU - 1, HTU - 10, HTU - 100
I will consolidate:
Using known facts to and derive related facts up to 1,000 including:
-If $7+5=12$, then $397+5=402$ (crossing the hundreds boundary)
-If $95+10=105$, then $95+9=104$ (crossing the hundreds boundary)
-If 205-10=195, then 205-9 =196 (crossing the hundreds boundary)
Use my knowledge of doubles to derive related facts:
$-15+16=31$ because double $15=30$ and $30+1=$ 31
Number pairs that total 1,000 (in multiples of 100)
$-180+50=230$ because $18+5=23$
$-180-50=130$, because $18-5=30$.

Problem solving.

I can solve problems including missing number problems, using number facts, place value and addition and subtraction. I can applying knowledge of mental and written methods to improve efficiency.

Reading and writing numbers, understanding place value and comparing numbers.

Read and write numbers to at least 1,000 in numerals and in words
Tell and write the time from an analogue clock, including using Roman numerals for I to XII and use notation for 12 and 24 hour clocks
I can recognise the place value of each digit in a three-digit number (hundreds, tens, ones/units) I can compare and order numbers up to 1,000 ; use <, > and = signs

Mental Calculation continued.
I can find the difference between two numbers that are close to each other by counting on using knowledge of the inverse:

- 86-45 =41 because $45+41=86$.

I can use my knowledge of the inverse to find missing numbers:

- 37 - = 12

Or round to nearest pence and adjust:
$\bullet 3 \times 99 p=£ 1+£ 1+£ 1-3 p=£ 2.97$

Written Calculations, identifying, representing and estimating numbers, and checking answers.

I can add and subtract numbers with up to three digits using expanded column addition and subtraction.

I can identify, represent and estimate numbers using different representations

I can estimate the answer to a calculation using rounding, and use inverse operation to check answers

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.		
HTU + 1 $325+1=326$	HTU + 10 $325+10=335$	HTU + 100 $325+100=425$
Continue with expanded column addition using partitioning, adding 2and then 3-digit numbers, using Dienes $347+122=$ Recorded as $\begin{array}{lll} 300 & 40 & 7 \\ 100 & 20 & 2 \end{array}$ $400+60+9=469$	Cross the tens and then the hundreds boundary $264+159=$ Recorded as $300+110+13=423$	When children have an image of 1ness, 10 -ness and 100 -ness, place value counters can be used to represent the numbers.
Begin to record in a more formal way, continuing to use resources to calculate, prove the answer is correct and explain. 347 122 $\begin{gathered} 9(7+2) \\ 60(40+20) \\ 400(300+100) \\ \hline 469 \end{gathered}$		

The key difference is that Year 3 start to record more formally, albeit in an expanded version of the column method.

This allows a visual representation of the whole number split into its place value parts, which are easier to manage.

Removing the manipulatives means we can represent in a more abstract way - still with a visual representation but now moving away from the concrete. This will only happen when a child is secure.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.		
Recap using number lines for counting back and counting on		
HTU - 1 $345-1=344$	HTU - 10 $345-10-335$	
Introduce expanded method with 3 digit numbers HTU - HTU using partitioning and	Then exchange from other columns using partitioning and Dienes	When children have an image of the numbers, use place value counters to represent the numbers
Dienes $398-136=$		10 10 10 10 1 10 10 10 2 70
$\begin{array}{lll} 300 & 90 & 8 \end{array}$	Becomes: 60	Becomes:
$200+60+2=262$		10 10 10 10 1 10 10 h 1 1 60 12
	\square	Becomes:
		Recorded in the same way as before:
		$\left.\left\|\begin{array}{rr}70 & 12 \\ 40 & 7 \\ \hline 20 & 5\end{array}\right\|$60 70 12 40 7 20 5 \right\rvert\,

ADDITION AND SUBTRACTION

A year 4 child would say:

Number facts and counting.

I will continue to practise and improve fluency for:
addition and subtraction facts to 20 , number pairs that total 100,
number pairs that total 1,000 in multiples of 100,
count backwards through zero to include negative numbers,
count in multiples of 6, 7, 9, 25 and 1,000
Find 1,000 more or less than a given number.

Mental Calculation (addition)

I can add and subtract numbers mentally, including: HTU + 1, HTU + 10, HTU + 100 HTU - 1, HTU - 10, HTU - 100 I will consolidate:
Using known facts to and derive related facts up to 1,000 including:
If $7+5=12$, then $397+5=412$ (crossing the hundreds boundary)
If $95+10=105$, then $95+9=104$ (cross the hundreds boundary)
If 205-10=195, then 205-9 =196 (crossing the hundreds boundary)
I can use knowledge of doubles to derive related facts:
$15+16=31$ because double $15=30$ and $30+1=31$
Number pairs that total 1,000 (in multiples of 100)
$180+50=230$ because $18+5=23$
$180-50=130$, because $18-5=30$.

Problem solving.

I can solve two-step addition and subtraction problems in context, deciding which operations and methods to use and explain why.
I can apply my knowledge of mental and written methods to improve efficiency.

Reading and writing numbers, understanding

 place value and comparing numbers.I will consolidate:
Reading and writing numbers to at least 1,000 in numerals and in words.
I can use Roman numerals to 100 (I to C).
I can recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, ones/units).
Recognise decimals as parts of a whole number I can compare and order numbers beyond 1,000; use <, > and = signs.
I can compare numbers with the same number of decimal places up to 2 decimal places.

Mental Calculation (subtraction).

I can find the difference between two numbers that are close to each other by counting on using knowledge of the inverse:
$\bullet 86-45=41$ because $45+41=86$
Use knowledge of the inverse to find missing numbers:
-37- = 12
Round to nearest pence and adjust:
$\bullet 3 \times 99 p=£ 1+£ 1+£ 1-3 p=£ 2.97$

Written Calculations, identifying, representing and estimating numbers, and checking answers.

I can add and subtract numbers with up to four digits using formal written methods of columnar addition and expanded column subtraction where appropriate I can identify, represent and estimate numbers using different representations
I can estimate the answer to a calculation using rounding, and use inverse operation to check answers

The main differences here in Year 4 are reasoning and explaining rather than just doing and the introduction of the decimal number system and negatives. This extends place value knowledge through 0 and to parts of the whole.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.		
Secure recording of more formal column addition, continuing to use resources to calculate, prove the answer is correct and explain.	Move to compacted method (no carrying)	Column addition with up to 4 digit numbers using estimating to check. $1,435+2,362$ Estimation: 1,400 $+2,400=3,800$ $\begin{array}{r} 1435 \\ +2362 \\ ---------------~ \end{array}$
Then with carrying - show this using$\begin{array}{r} 268 \\ +355 \\ \hline \end{array}$268 +355 3 1	nes and then place value counters$\begin{array}{r} 268 \\ +355 \\ \hline 23 \\ \hline 1 \end{array}$268 +355 623 11	$\begin{aligned} & 159+264 \\ & \text { Estimate } 160+260=4.20 \\ & 159 \\ & +264 \\ & 423 \end{aligned}$
Extend to four digit numbers $\begin{aligned} & 3517+396 \\ & \text { Estimate: } \\ & 3500+400=3900 \\ & 3517 \\ & +\quad 396 \\ & 3913 \\ & \hline 11 \end{aligned}$	Use and apply these methods thr appropriate amounts of money a	t especially in the context of sures.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Continue to secure expanded method with 3 digit numbers and appropriate resources/representations	Children should begin to estimate their answers through applying their knowledge of rounding and mental subtraction $368-214$ Estimation: $370-210=160$	Continue expanded subtraction method with up to 4 digit numbers $\begin{aligned} & 3645-1562 \\ & \text { Estimate } \\ & 3600-1600=2000 \\ & 30006000405 \\ & -1000500 \quad 602 \\ & \hline 2000+0+80+3 \\ & =2083 \end{aligned}$

Use and apply these methods throughout especially in the context of appropriate amounts of money and measures.

ADDITION AND SUBTRACTION

A year 5 child would say:

Number facts and counting.

I will continue to practise and improve fluency for: addition and subtraction facts to 20 , number pairs that total 100,
number pairs that total 1,000 in multiples of 100,
number pairs that total 1,000 in multiples of 10,
Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers through zero .
Count forwards or backwards in steps of powers of 10 up to 1,000,000 from any given number.

Reading and writing numbers, understanding place value and comparing numbers.

I can read, write, order and compare numbers to at least 1,000,000 and understand the value of each digit I can read Roman numerals to $1,000(\mathrm{M})$ and recognise years written in Roman numerals
I can recognise the place value of each digit in a fourdigit number (thousands, hundreds, tens, ones/units) Recognise decimals as parts of a whole number I can read, write, order and compare numbers to at least 1,000,000 and understand the value of each digit; use <, > and = signs
I can ompare numbers with the same number of decimal places up to 2 decimal places.

Mental Calculation continued.

I can calculate with increasingly large numbers
I can add and subtract decimals using knowledge of whole numbers
$5.6+3.5=9.1$ because $56+35=91$
$6.4-3.8=2.6$ because $64-38=26$
I can round to the nearest pound and compensate:
$£ 2.97+£ 2.97+£ 2.97=£ 3+£ 3+£ 3-9 p=£ 8.91$

Written Calculations, identifying, representing and

 estimating numbers, and checking answers.I can add and subtract whole numbers with more than four digits including using formal written methods of columnar addition and subtraction
I can use rounding to check answers to calculations in the context of a problem

Year 5 move on towards more formal written methods. These allow children to consolidate and apply mental strategies on a range of written methods. Fluency and accuracy, as well as estimation and checking become natural.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Secure understanding of formal column addition with carrying, continuing to use resources to calculate, prove the answer is correct and explain.	Move on to numbers exceeding 4 digits $\begin{aligned} & 25391+1262 \\ & \text { Est. } 25000+1000 \\ & =26000 \\ & 25391 \\ & +\quad 1262 \\ & \hline 26653 \end{aligned}$	Apply method to addition of numbers with the same number of decimal places $\begin{aligned} & E 26.47+£ 6.54 \\ & \text { Est. } £ 26+E 7 \\ & =E 33 \\ & £ 26.47 \\ & E 6.54 \\ & E=33.01 \end{aligned}$
Then to addition of numbers with different number of decimal places gradually increasing the number of numbers to be added $\begin{aligned} & 19.01+3.56+1.2 \\ & \text { Est. } 19+4+1=24 \\ & 19.01 \\ & 3.56 \\ & 1.20 \\ & \hline 23.77 \end{aligned}$	Use and apply these methods throughout especially in the context of appropriate amounts of money and measures.	

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Use and apply these methods throughout especially in the context of appropriate amounts of money and measures.

ADDITION AND SUBTRACTION

A year 6 child would say:

Number facts and counting.

I can continue to practise and improve fluency for:
addition and subtraction facts to 20
number pairs that total 100
number pairs that total 1,000 in multiples of 100
number pairs that total 1,000 in multiples of 10 .
I can use negative numbers in context, and calculate intervals across zero.

Mental Calculation.

I can consolidate previous years mental calculations.
I can perform mental calculations including mixed operations and large numbers.
use knowledge of the order of operations to carry out calculations involving the four operations $[(4 \times 3) \div 6]+50=$?

Problem solving.

I can solve multi-step addition and subtraction problems in context, deciding which operations and methods to use and explain why.

I can apply my knowledge of mental and written methods to improve efficiency.

Written Calculations, identifying, representing and estimating numbers, and checking answers.

As for Year 5 but with increasing complexity of numbers, steps, problems and investigations

I can round any whole number to a required degree of accuracy.
I can solve problems which require answers to be rounded to specified degrees of accuracy I can use rounding to check answers to calculations in the context of a problem.

As with year 5 there is a lot of consolidation of methods in calculation. Fluency and efficiency moves into problem solving with a larger emphasis on rounding for estimation and checking. Formal compact column methods are encouraged, but other methods can be used until the child is ready to tackle these.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Secure understanding of formal column addition with carrying, involving decimals, continuing to use resources to calculate, prove the answer is correct and explain.

Add several numbers of increasing complexity

Add several numbers of increasing complexity including with decimals
$23.452+9.08+52.7$
Est. $\quad 23+9+50=82$
23.452
9.080
52.700
85.232

Use and apply these methods throughout especially in the context of appropriate amounts of money and measures.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Continue to secure decomposition method with resources where appropriate	Use compacted decomposition method with increasing complexity $\begin{aligned} & 140289-83194 \\ & \text { Est. } 140000-83000 \\ & =57000 \\ & 01310189 \\ & -\quad 83194 \\ & \hline 57095 \end{aligned}$	Use compacted decomposition method with decimal numbers with different numbers of decimal places $\begin{aligned} & 105.419 \mathrm{~kg}-32.05 \mathrm{~kg} \\ & \text { Est. } 110 \mathrm{~kg}-30 \mathrm{~kg}=80 \mathrm{~kg} \\ & X^{\prime} 05.4^{3}-19 \mathrm{~kg} \\ & -\quad 32.050 \mathrm{~kg} \\ & \hline 73.369 \mathrm{~kg} \end{aligned}$

Westffeldels uwnor schoo

Progression and expectation

in calculations;

a guide for parents.

Multiplication and division.

A pre year 3 child would say:

Multiplication and division facts.

I can count in steps of 2,3 and 5 from zero and in tens from any number, forwards or backwards.

I can recall and use multiplication and division facts from the 2,5 and 10 multiplication tables

I can recognise odd and even numbers.

I know that doubling is multiplying by 2 and halving is dividing by 2 .
I know significant doubles involving doubling multiples of 5 up to $50(10+10,50+50,25+25)$.

Mental Calculation.

I can show that multiplication of 2 numbers can be done in any order (commutative) and division of one number by another cannot

Problem solving.

I can solve problems involving multiplication using resources, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

Written Calculation.

I can calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x , \div and $=$ signs.

Inverse operations, estimating and checking.

I can understand that multiplication is the inverse of division and division is the inverse of multiplication

Multiplication as repeated addition	Use arrays to show commutativity $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \end{aligned}$	
$\begin{aligned} & 5 \times 3=3+3+3+3+3=15 \\ & 3 \times 5=5+5+5=15 \end{aligned}$	Counting in steps	Relate multiplication to scaling \square 01010. 010 double 3 is 6 $3 \times 2=6$

How many 10 ps are in 50 p? (10)	Using arrays to understand that divis How many groups of 3 are in 15 ? How many groups of 5 are in 15 ? To represent $15 \div 3=5$ and $15 \div 5=3$	is the inverse of multiplication
Understand division and sharing and grouping		$\begin{aligned} & \text { How many } 35 \text { is hops in } 15 \text {. How big is each hop? } \\ & \text { in } 15+5=3 \\ & 15 \text { shared between } 5 \end{aligned}$
6 sweets shared between 2 people. How many do they each get? SOB	There are 6 sweets. How many people can have 2 sweets each?	
Halving is dividing by 2 Half of 6 is 3 $6 \div 2=3$		

Multiplication and division facts.

I can count in multiples of 4, 8, 50 and 100 from zero.

I can recall and use multiplication and division facts from the 3, 4 and 8 multiplication tables.

Mental Calculation.

I can write and calculate the mathematical statements for multiplication and division using the multiplication tables that I know, including for 2-digit numbers multiplied by 1 digit numbers
($4 \times 2=8$, so $4 \times 20=80$) using mental methods that will develop into more formal written methods.

I can connect the 2,4 , and 8 multiplication tables through doubling.

I can develop efficient methods using commutativity and associativity.
$(4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240)$.
I can use existing knowledge to find related facts
$(3 \times 2=6,6 \div 2=3,2=6 \div 3)$.

Written Calculation.

I can write and calculate mathematical statements for multiplication and division, using the multiplication tables that I know, including 2-digit numbers multiplied by 1-digit numbers, using mental methods and progressing to more formal written methods.

Inverse operations, estimating and checking.

I can estimate the answer to a calculation and use inverse operations to check answers.

Problem solving.

I can solve problems including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which a number objects are connected to a multiple objects.

In year 3 the main focus is on finding facts for the 2, 3, 4, 5, 8 and 10 tables. Written calculations are used for facts known, bot to find answers. This consolidates the relationship between multiplication tables and a written method.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.		
Represent calculations as repeated addition, and arrays, and use number lines to calculate	Through doubling, connect the 2, 4 and 8 times tables	Use existing knowledge to find related facts If $4 \times 2=8$, then $4 \times 20=80$
Continue to relate multiplication to scaling	MY model is 20 cm tall My model is 3 times as high as yours. It is 60 cm tall.	Begin to use arrays to introduce the grid method, starting with 1 digit multiplied by 1 digit numbers 4 6 $6 \times 4=24$ Relate this to division
Move on to 2 digit multiplied by 1 digit for children who are ready 14×6 $60+24=84$	Also use partitioning to show this $\begin{aligned} & \begin{array}{l} 14 \times 6 \\ \\ \xrightarrow{10 \times 6}=60 \text { and } 4 \times 6=24 \end{array} \end{aligned}$	

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Represent calculations as arrays and jumps on a number line Reinforce sharing and grouping	Use existing knowledge to find related facts $4 \times 2=8,8 \div 4=2$ and $2=8 \div 4$ So, $40 \times 2=80,80 \div 2=40 \text { and } 40=80 \div 2$ Multiplication is like jumps on the number line. $5 \times 4=20$. Five jumps of 4 gets you to 20 . Division is like making jumps of four backwards from 20 till you get to 0 : Five jumps of 4 gets you from 20 till 0 .

Represent calculations as arrays and jumps on a number line Reinforce sharing and grouping

Continue to use the number line to divide by a single digit divisor including with remainders
Repeated subtraction using a horizontal number line: $15 \div 5$

3 jumps of 5
so $15 \div 5=3$
With a remainder: $15 \div 4$

3 jumps of 4 and 3 left over
$15 \div 4=3$ r 3

A year 4 child would say:

Multiplication and division facts.

I can count in multiples of 4, 6, 7, 9, 25 and 1,000 from zero

I can recall multiplication and division facts for table up to 12×12
I can find doubles and halves of numbers up to 50.

Mental Calculation.

I can use place value, known and derived facts to multiply and divide mentally including multiplying by 1 and 0 , dividing by 1 , multiplying together 3 numbers

I can recognise and use factor pairs and commutativity in mental calculations.

I can understand the impact on place value when a number is multiplied or divided by10 and 100.

Halve whole numbers including odd numbers
I know that $x 4$ is doubling twice and $x 8$ is doubling 3 times.

Properties of numbers.

I can recognise and use factor pairs and commutativity in mental calculations.

Written Calculation.

I can multiply two- and three-digit numbers by one-digit using the grid method linked to arrays.

Problem solving.
I can solve problems including missing number problems, involving multiplication and division, including positive integer scaling problems and harder correspondence problems in which a number of objects are connected to multiple objects .

Year 4 must learn all tables to 12×12. They also start to look into the relationship between division and multiplication facts. The use of arrays (see diagram) show these facts explicitly and gives a clear visual representation. The grid method is now used to partition numbers and multiply, using multiples of ten.

Division is expressed on a number line using known facts to group multiples into chunks of known facts- e.g multiples of ten.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.
Use mental calculation and efficient strategies to find products and solve missing number problems

Use grid method for multiplying

Arrays.

Secure understanding of the grid representing an array for multiplying 2 and then 3 digit numbers by a single digit
14×6

$60+24=84$
$14 \times 6=84$
$84 \div 6=14$
$84 \div 14=6$

Then use the grid as a representation for multiplying 2 and 3 digit numbers by a single digit 34×6			Estimate answers first and use column addition if necessary to reach an answer			
			374×6 Estimate: $400 \times 6=2400$			
\mathbf{x}	30	4				
6	180	24	x	300	70	4
$180+24=204$			6	1800	420	24
			$\begin{array}{r} 1800 \\ 420 \\ 24 \end{array}$			
			224			

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.
Use mental calculation and efficient strategies to find products and solve missing number problems

Divide 2 and 3 digit numbers by a single digit on a number line using chunking in increasingly efficient steps

Divide 2 and 3 digit numbers by a single digit, using chunking, where there is a remainder

$$
172 \div 8=21 \mathrm{r} 4
$$

172
-80
(10×8)
92
$-80 \quad(10 \times 8)$
12
$-8 \quad(1 \times 8)$
$4 \quad r 4$

Encourage use of known and related facts to make increasingly efficient jumps
(1 know that $4 \times 4=16$, so $40 \times 4=160$)

How many 5 s have been subtracted?
14 sets of 5 , with 3 left over.
Answer: $73 \div 5=14$ r3

A year 5 child would say:

Multiplication and division facts.

I can count forwards and backwards in steps of powers of 10 for any given number up to 1000000.

I can consolidate knowledge of all multiplication tables and related division facts.

Mental Calculation.

I can multiply and divide numbers, including decimals, mentally using know facts:

- $0.6 \times 7=4.2$ because $6 \times 7=42$
- $3.5 \div 5=0.7$ because $35 \div 5=7$.

I can multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 .

I Know that TU $\times 5$ is TU $\times 10$ and then halved ($\div 2$) e.g. 17 $\times 5=(17 \times 10) \div 2$.

I Know that TU $\times 9$ is TU $\times 10$ then subtract TU number e.g. $17 \times 9=(17 \times 10)-17$.

I can round and adjust for near pounds e.g. $£ 3.98 \times 3=$ £4 x $3-6 p=£ 11.94$.

I can use knowledge of doubles and halves of whole numbers to find doubles and halves of decimal numbers e.g. double 2.6 is 5.2 because double 26 is 52 , half of 5.8 is 2.9 because half of 58 is 29 .

Problem solving.

Solve problems including missing number problems, involving multiplication and division, including using their knowledge of factors, multiples, squares and cubes Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding of the equals sign e.g. $320 \div 8=$ 50×0.8
Solve problems involving multiplication and division including scaling by simple fractions and problems involving simple rates.

Properties of numbers.

I can identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers.

I know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.

I can establish whether a number up to 100 is prime and recall prime numbers up to 19 .

I can recognise and use square numbers and cube numbers and the notation for squared (2) and cubed (3).

Written Calculation.

Multiply numbers up to 4 digits by a one or two-digit number using a formal written method

Divide numbers up to 4 digits by a one- or two-digit number using the formal written method of short division and interpret remainders appropriately for the context

Inverse operations, estimating and checking.

I can estimate the answer to a calculation and use inverse operations to check

Year 5 move onto formal calculations. The grid method should still be used for larger numbers, HTU X TU, as well as the expanded column method. Once secure the compact column method can be used.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Use mental calculation and efficient strategies to find products and solve missing number problems Secure use of grid method for multiplying 2 and 3 digit numbers by 1 digit numbers

Introduce short multiplication

Use grid method with expanded short method alongside for comparison
352×7
Estimate: $400 \times 7=2800$

x	300	50	2
7	2100	350	14

2100
350
$\begin{array}{r}14 \\ \hline 2464\end{array}$
$\overline{2464}$
3 digit numbers multiplied by 1 digit number
374×6
Estimate: $400 \times 6=2400$

352×7
Estimate: $400 \times 7=2800$

352

$\times \quad 7$
14
(2×7)

$350 \quad(50 \times 7)$
$\underline{2100}(300 \times 7)$

Division remains on a number line using chunking but now a relationship with short division is established. Manipulatives such as place value counters or Dienes cubes are used to show the relationship between groups and division.

Extend to short division with 'carrying', dividing 2 and then three digit numbers by a single digit number, using place value counters to secure understanding

Extend to short division with remainders, starting with 2, then 3 , then 4 digit numbers dividing by a single digit number

A year 6 child would say:

Multiplication and division facts.

I can count forwards and backwards in steps of powers of 10 for any given number up to 1000 000.

I can consolidate knowledge of all multiplication tables and related division facts.

Mental Calculation.

I can perform mental calculations including with mixed operations and large numbers.

I can associate a fraction with division and calculate decimal fraction equivalents (e.g.0.375) for a simple fractions (e.g.3/8).

Problem solving.

I can solve problems involving addition, subtraction, multiplication and division

I can solve problems involving similar shapes where the scale factor is known or can be found.

Order of operations, estimating and checking using inverse.
I can use knowledge of the order of operations to carry out calculations involving the four operations. BODMAS.

I can solve problems involving addition, subtraction, multiplication and division.

Solve problems involving similar shapes where the scale factor is known or can be found.

Properties of numbers.

I can identify common factors, common multiples and prime numbers.

I can use common factors or simplify fractions; use common multiples to express fractions in the same denomination.

I can calculate, estimate and compare volume of cubes and cuboids using standard units including cm 3 and m 3 and extending to other units such as mm3 and km3.

Written Calculation.

I can multiply multi-digit numbers up to 4-digits by a two-digit number using the formal written method of long multiplication

I can divide numbers up to 4-digits by a 1-digit whole number using formal written method of short division were appropriate for the context

I can divide numbers up to 4 digits by a 2-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions or by rounding as appropriate for the context

Use written division methods in cases where the answer has up to two decimal places.

Year 6 should now be fluent in multiplication facts and related division. They move onto a formal structure of calculations. The compact column method and long division methods are encouraged, however some may still need to use the grid for consolidation.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Use mental calculation and efficient strategies to find products and solve missing number problems
Continue to secure and practise short multiplication
Use grid method to link to long multiplication for multiplying by $\mathbf{2}$ digit numbers
18×13
Estimate: $20 \times 10=200$

x	10	8
10	100	80
3	30	24

180
30
24

234

1
Extend to long multiplication of 4 digit numbers by 2 digit numbers
1325×17
Estimate: $1300 \times 20=26000$

Use short and long multiplication to multiply numbers with 1 and then 2 decimal places
3.28×9
Estimate: $3 \times 9=27$

With division, remainders should now be expressed either as a fraction of the whole or as a decimal. Decimal remainders should be calculated with a degree of accuracy.
Chunking division can be used alongside the long division method.

Children need to continue to learn using concrete resources, models, representations and images to develop their conceptual understanding alongside their fluency with number and knowledge and use of procedures.

Use mental calculation and efficient strategies to find products and solve missing number problems
Continue to secure and practise short division
Extend short division to include remainders expressed as decimals
$2617 \div 8$

Introduce long division by chunking without and then with remainders

Introduce long division, without and then with remainders

Long division expressing remainders as fractions and decimals

